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Potential of interaction between two- and three-dimensional solitons

Boris A. Malomed*
Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

~Received 18 June 1998!

A general method to find an effective potential of interaction between far separated two-dimensional~2D!
and 3D solitons is elaborated, including the case of 2D vortex solitons. The method is based on explicit
calculation of the overlapping term in the full Hamiltonian of the system~withoutassuming that the ‘‘tail’’ of
each soliton is not affected by its interaction with the other soliton!. The result is obtained in an explicit form
that does not contain an artificially introduced radius of the overlapping region. The potential applies to spatial
and spatiotemporal solitons in nonlinear optics, where it helps to solve various dynamical problems: collisions,
formation of bound states~BS’s!, etc. In particular, an orbiting BS of two solitons is always unstable. In the
presence of weak dissipation and gain, the effective potential can also be derived, giving rise to bound states
similar to those recently studied in 1D models.@S1063-651X~98!02912-2#

PACS number~s!: 03.40.Kf, 42.65.Vh, 52.35.Sb
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I. INTRODUCTION

Recent progress in studies of two-dimensional~2D! soli-
tons in models of non-Kerr nonlinear optical media has
tracted a lot of interest to their interactions. 2D vortex so
tons and interactions between them in the quintic nonlin
Schrödinger~QNLS! equation were studied in Ref.@1#, non-
planar interactions between 2D solitons in a medium with
quadratic (x (2)) nonlinearity were considered, numerical
and analytically, in Ref.@2#, and various features of the in
teraction between 2D solitons in photorefractive media w
revealed by numerical simulations and direct experime
@3–5#. The nonlinearity must be non-Kerr because the us
cubic ~Kerr! self-focusing term gives rise to collapse in 2
and 3D cases. As it was demonstrated in Ref.@6#, the col-
lapse does not take place in any physical dimension in
model with thex (2) nonlinearity. This opens the way t
stable 2D and 3Dspatiotemporalsolitons, or ‘‘light bullets’’
~LB’s! @7#. The x (2) LB’s were recently studied in detail in
Refs.@8# and @9#.

The objective of this work is to find an effective potenti
of interaction between 2D and 3D solitons in isotropic me
~note that, as it was demonstrated in a very recent exp
mental work@4#, the interaction of 2D solitons in intrinsi
cally anisotropic photorefractive media is, in effect, prac
cally isotropic too!. The interaction potential is necessary
solve various dynamical problems, such as collisions, form
tion of bound states of solitons, etc., including a practica
important problem of designing all-optical switching b
means of interaction between 2D optical solitons. It will
demonstrated that a universal effective potential can be
tained analytically by means of a technique which gene
izes that developed for the 1D solitons in Ref.@10#. As a
paradigm model, one can take the multidimensional quin
Ginzburg-Landau~QGL! equation,

iv t1
1

2
¹2v1uvu2v2auvu4v

52 iv1 ig1¹2v1 ig2uvu2v2 ig3uvu4v, ~1!
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where the coefficientsa and g1,2,3 are positive. The QNLS
equation is a conservative version of Eq.~1!, without its
right-hand side. The quintic defocusing term;a is included
in order to prevent the collapse. Note that this term is
merely the simplest one that stabilizes the model: accord
to experimental data@11#, the combination of the focusing
cubic and defocusing quintic terms adequately models
nonlinear optical properties of some real materials. The fi
two terms on the right-hand side of Eq.~1! take into regard
linear losses, the cubic termg2 accounts fornonlinear gain
which compensates the losses, and the quintic dissipa
term;g3 provides for the overall stabilization of the mode
The QGL equation was first introduced in Ref.@12# ~in the
2D form!, and its 1D ~one-dimensional! version later at-
tracted a great deal of interest~see, e.g., Ref.@13# and refer-
ences therein!. In particular, stable localized pulses in the 1
QGL equation were found in Ref.@14# for the case of weak
dissipation~relevant for the applications to nonlinear optics!,
0<g1,2,3!1, that will also be assumed here. The existen
of the stable pulses in the opposite limit of strong dissipat
was independently shown in three different works@15#. Ac-
tually, the model~1! is selected just for the reference, as t
one that certainly gives rise to stable multidimensional s
tons; as will be seen below, the derivation of the effect
potential for the interaction between the solitons, presen
in this work, is quite universal and may be applied to a
conservative or weakly dissipative model that supports m
tidimensional solitons.

Note that stable 2D solitons, as well as two-soliton bou
states, were also found numerically in a model with the qu
tic nonlinearity similar to that in Eq.~1!, in which, however,
the linear part is of a higher order, containing the operat
]2/]t2 and¹4 @16#. However, that model is essentially mo
complicated than Eq.~1!, and its physical applications ar
less clear.

The paper is organized as follows. In Sec. II, the 2D a
3D soliton solutions are briefly considered, with emphasis
the form of their asymptotic ‘‘tails,’’ which determine th
effective interaction potential. In the same section, the mo
~1! is also reformulated in terms of nonlinear optics, where
finds applications of two types: the description of spat
7928 © 1998 The American Physical Society
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PRE 58 7929POTENTIAL OF INTERACTION BETWEEN TWO- AND . . .
cylindrical solitons in the bulk medium, and 2D and 3D LB
in the 2D nonlinear wave guide or 3D bulk, respectively. T
multidimensional solitons in the model with thex (2) nonlin-
earity have their own peculiarities, which are summarized
a separate subsection in Sec. II. In Sec. III, the interac
potential is analytically derived, in a general form, for the 2
and 3D solitons. In the same section, the interaction poten
for LB’s is also considered. In particular, the potential m
be spatiotemporally anisotropicfor the x (2) LB’s, while in
the other models it can always be cast into an effectiv
isotropic form. Concluding remarks are collected in Sec.
including a discussion of a possibility of existence of bou
states of the solitons. In particular, it is concluded, in acc
with the recent results obtained for thex (2) spatial solitons in
Ref. @2#, that a bound state of two solitons orbiting arou
each other may exist~in the dissipationless model!, but it is
always unstable. In the presence of the weak dissipation
gain, there are bound states of quiescent solitons, quite s
lar to those recently studied in the 1D model~that may be
both unstable and almost stable!. New possible states in th
2D and 3D cases are soliton lattices and ‘‘molecules.’’

II. TWO- AND THREE-DIMENSIONAL SOLITONS

A. The general case

A general stationary solution to Eq.~1! is v
5exp(2ivt)V(r ), whereV(r ) satisfies the equation

1

2
¹2V1uVu2V2auVu4V1vV

52 iV1 ig1¹2V1 ig2uVu2V2 ig3uVu4V. ~2!

In the 2D case, the solution is restricted to the form

V~r !5exp~ isu!V~r !, s50,61,62, . . . , ~3!

wherer andu are the polar coordinates,sÞ0 corresponding
to a vortex soliton, andV(r ) exponentially decays atr→`.
From the consideration of Eq.~1! it follows that the
asymptotic form of the soliton atr→` is

V~r !'Asr
21/2exp~2kr !, ~4!

k5A2
v1 i

1/21 ig1
'A22v2 iq, q5

1

A22v

1g1A22v, ~5!

and, atr→0,

V~r !'asr
usu ~6!

~i.e., the vortex soliton has a hole in its center!, with un-
known constantsAs andas . The expansion ofk in Eq. ~5!
employs the fact that, in the weakly dissipative regime,g1 is
small, andv@1, as the dissipation coefficient in front of th
term 2v in Eq. ~1! is 1.

The stability of thes50 soliton in the model~1! is very
plausible, and, in the conservative version of Eq.~1!, the
stability of the vortex soliton withusu51 was numerically
demonstrated in Ref.@1#. It is not known if the solitons with
n
n

al

y
,

d

nd
i-

usu.1 are stable~note that all the bright vortex solitons ar
unstable in thex (2) model, see, e.g., Ref.@17#!. Below, an
arbitrary integer value ofs will be kept, as the potential can
be derived in the general case, provided that the two solit
haves156s2 .

Description of 3D solitons with the internal ‘‘spin’’ is a
rather complicated problem, therefore only the 3D solito
with the zero spin will be considered here. The correspo
ing solution is sought for in the form of Eq.~3! with s50,
and with the difference thatr is now the radial variable in the
3D space, hence

V~r !'Asr
21exp~2kr ! ~7!

at r→`.
In the conservative version of the model, the frequen

v,0 is an arbitrary parameter of the soliton, while the a
plitudeAs , that can be found numerically, is a function ofv
@as well asas in Eq. ~6!#. In the presence of the weak diss
pation and gain, an actual soliton solution is selected fr
the continuous family as the one providing for a balance
the ‘‘number of photons,’’*0

`uV(r )u2r D21dr @14#. In that
case, the value ofv should also be found numerically. Be
low, v andAs will be treated as given parameters.

In the application to the nonlinear optics, the QNLS ve
sion of the 2D model~1! describes time-independent ligh
distributions in a 3D medium, so that the variablet is not
time, but the propagation coordinate. The dynamics of LB
in 2D and 3D optical media is governed by an equation t
is also similar to Eq.~1!. Neglecting the dissipative part, th
corresponding QNLS equation is

ivz1
1

2
~¹'

2 v1vtt!1uvu2v2auvu4v50, ~8!

wherev is the envelope of the electromagnetic waves,z and
t[t2z/cgr are the propagation coordinate and the so-ca
retarded time,cgr being the mean group velocity of the ca
rier wave, and the operator¹'

2 acts on the transverse coo
dinate~s!. In Eq. ~8!, anomaloustemporal dispersion~ac-
counted for by the termvtt) is assumed. A spatiotempora
soliton solution to Eq.~8! ~i.e., LB! can be sought for in the
form @cf. Eq. ~3!#

v5exp~ ikz!V~j!, j[Ar'
2 1t2. ~9!

Here,k is thepropagation constantand r' is the transverse
coordinate in the 2D model, or the radial variable in t
transverse plane in the 3D model. In the latter case, a m
general solution with a ‘‘spatiotemporal spin’’ can be look
for in the form

v5exp~ ikz1 isu!V~j!, ~10!

where this timeu is the formal angular coordinate on th
plane (r' ,t). The solution~10! has a ‘‘hole’’ in its center,
cf. Eq. ~6!. The asymptotic form of all the LB solutions a
j→` is similar to that given above by Eqs.~4!, ~5!, and~7!:

V~j!'Aj2~D21!/2exp~2A2qj!. ~11!
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B. The model with the quadratic nonlinearity

An allied physically important model is that which de
scribes multidimensionalx (2) media@8#:

ivz1
1

2
~¹'

2 v1vtt!2v1v* w50, ~12!

2iwz1
1

2
~¹'

2 w1dwtt!2gw1
1

2
v250, ~13!

wherev andw are envelopes of the fields at the fundamen
harmonic~FH! and second harmonic~SH!, g.0 is a mis-
match parameter, andd is a relative coefficientof the tem-
poral dispersion. In the real physical situations,d,1, includ-
ing negative values~which correspond to the norma
dispersion at the second harmonic!. As was shown in Refs
@8# and@9#, the spatiotemporal soliton solutions to Eqs.~12!
and~13! can only exist ifd>0. However, the solution canno
be sought for in the form~9!, except for the unrealistic spe
cial cased51. The asymptotic form of the soliton can b
nevertheless easily found from the linearized versions
Eqs.~12! and ~13!, cf. Eqs.~4!–~7! and ~9!:

vs'Aj2~D21!/2exp~2A2j!, ~14!

ws'Bj̃2~D21!/2exp~2A2gj̃!, j̃2[r'
2 1d21t2. ~15!

Here, only the cases50 is considered, and the propagatio
constant is not explicitly introduced, as it may be absorb
by the mismatch parameterg.

The consideration of Eq.~13! readily demonstrates tha
while the asymptotic expression~14! for FH is always rel-
evant, the expression~15! makes sense only if it decays
r' ,t→` not fasterthanvs

2 . Further straightforward analy
sis shows that this condition is always satisfied, provided
g,4d, and never satisfied, ifg.4. In the intermediate cas

4d,g,4 ~16!

~recall that the physical constraint isd,1, andg54 has a
special meaning corresponding to theexact matchingbe-
tween FH and SH@8#!, the condition holds, on the plane o
the variablesr andt, inside the sector

~t/r'!2,
42g

g24d
d, ~17!

and does not hold outside this sector. Thex (2) solitons for
which this condition holds, i.e., the shape of their asympto
‘‘tails’’ in each harmonic isindependentlydetermined by the
corresponding linearized equations, may be naturally ca
free-tail solitons.

In the case when the above condition does not hold,
vs

2 , as given by Eq.~14!, decays slower thanws as per Eq.
~15!, the latter expression does not apply. In this case,
actual decay of the SH tail is governed by the quadratic te
in Eq. ~13!, while Eq. ~14! remains valid. The final resul
which, in this case, replaces Eq.~15! is

ws'
1

2
A2

j32D

~g24!j214~12d!t2
exp~22A2gj! ~18!
l

f

d

at

c

d

.,

e
m

@note that the underlying conditions that define the pres
case guarantee that the expression~18! is not singular#. The
solitons of this type may be called, on the contrary to t
free-tail ones defined above,tail-locked solitons. Note that,
in the intermediate case~16!, the free-tail asymptotic expres
sion ~15! holds inside the sector~17!, while the tail-locked
expression~18! is valid outside the sector.

III. THE INTERACTION POTENTIAL

A. The general case

Coming back to the paradigm model~1!, one notes that
the conservative~left-hand! side of its stationary version~2!
can be derived from the Hamiltonian

H5E S 1

2
u¹Vu22

1

2
uVu41

1

3
auVu62vuVu2Ddr . ~19!

The Hamiltonian allows one to define an effective interact
potential for two separated solitons@18#. In the original
works, the wave field corresponding to the two-soliton co
figuration was postulated to be a linear superposition of t
isolated solitons. This was substituted into the Hamiltoni
and a term produced by the overlapping of the ‘‘body’’
each soliton with a weak ‘‘tail’’ of the other one was iden
tified as an effective interaction potential. This approach
quires actual calculation of the corresponding integral te
in Eq. ~19!, a drawback being that a distortion of the ‘‘tail’
due to its interaction with the other soliton is ignored. In th
work, a more consistent approach will be developed, follo
ing that elaborated for the 1D solitons in Ref.@10#. The
method is based on representing the wave field in a vicin
of each soliton in the form

v~r ,t !5exp~2 ivt !@Vs~r !1Vt~r !#, ~20!

whereVs(r ) is the isolated soliton~3!, Vt(r ) is a small tail
generated by the second soliton, and the influence of a g
soliton on the other soliton’s ‘‘tail’’ isnot neglected. The
distanceR between the centers of the two solitons is assum
to be essentially larger than the soliton’s size;k21, see Eq.
~4!. A similar structure of the wave field is assumed near
center of the second soliton.

Only the case when the interacting solitons are identica
considered@in particular,s156s2 for the 2D vortex soli-
tons, and the amplitudesuAsu, defined as per Eq.~4!, are
equal#, hence the solitons have the same frequencyv, which
allows one to define a phase differencec between them. The
case of the identical solitons is the most relevant one,
parameters of the solitons are, in a real physical situat
uniqely selected by the above-mentioned balance betw
the gain and dissipation.

The next step is, as was said above, to insert the exp
sion ~20! into the Hamiltonian~19! and calculate the overlap
term in an area around the first soliton, adding then a sy
metric contribution from the vicinity of the other soliton. I
the first approximation, only the terms linear inVt are to be
kept, which yields the following expression for the effectiv
interaction potential
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UD~R,c!5F E S 1

2
¹Vs•¹Vt* 2uVsu2VsVt* 1auVsu4VsVt*

2vVsVt* Ddr1c.c.G1$1
2%, ~21!

where the subscriptD pertains to the dimension. Here, c.
stands for the complex conjugate expression, the integra
is assumed over the overlapping region in a vicinity of t
first soliton, and$1
2% is the symmetric contribution from
the second soliton. Applying the Gauss theorem to the
term in Eq.~21!, one transforms, in the 2D case, the expr
sion ~21! into the form

UD~R,c!5H F2E S 1

2
¹2Vs

1uVsu2Vs2auVsu4Vs1vVsDVt* dr

1
1

2E Vt* ~n–¹!VsdlG1c.c.J 1$1
2%,

~22!

where the surface integral term is taken over a closed con
surrounding the first soliton,n being a local vector normal to
the contour. As the contour, one can choose a circumfere
whose center coincides with that of the first soliton~Fig. 1!.
The radiusr is chosen so that

k21!r!R, ~23!

i.e., it is much larger than the size of the soliton, but mu
smaller than the separation between the two solitons.
final objective will be to obtain an expression that does
depend on the auxiliary radiusr. To this end, it will be
necessary to supplement the condition~23! by the additional
one

r2/R!k21, ~24!

which is obviously compatible with Eq.~23!.
In the 3D case, the difference is that the surface integra

Eq. ~22! is taken over a sphere of the radiusr, so that Fig. 1
shows the central cross section of the 3D situation. The c
ditions ~23! and ~24! pertain equally well to the 3D case.

At this stage of the analysis, the dissipative terms in
~2! are still neglected. BecauseVs is an exact single-soliton
solution to Eq.~2!, the first integral term in Eq.~22! van-
ishes. The conditions~23! allow one to substitute bothVt and

FIG. 1. The two-soliton configuration in the two- and thre
dimensional cases~in the latter case, the figure shows the cent
cross section of the 3D configuration!. The points 1 and 2 are
centers of the solitons.
on

st
-

ur

ce

h
e
t

in

n-
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Vs in the surface integral term in Eq.~22! by the asymptotic
expressions~4!, which yields, in the 2D case

U2~R,c!52A2
v

2
uAsu2Are2kr

3F E
0

2p

r 21/2exp~ ic1 is1u2 is2h!

3exp~2kr !du1c.c.G1$1
2%. ~25!

The anglesh andu and the radius

r 5A~R1r cosu!21r2 sin2u

5R1r cosu1
1

2
~r2/R!sin2u1••• ~26!

are defined in Fig. 1, the condition~23! being used to expand
the radical in Eq.~26!. Substituting the expansion into Eq
~25! and taking into regard the condition~24!, in the first
approximation it is enough to keep the first two terms fro
Eq. ~26! in exp(2kr), and only the first term inr 21/2. Addi-
tionally, in the same approximation one may seth50, which
leads to

U2~R,c!52A2
v

2
uAsu2R21/2Are2kr

3Fe2kRE
0

2p

exp~ ic1 is1u!

3exp~2kr cosu!du1c.c.G1$1
2%.

~27!

The integral in Eq.~27! can be calculated exactly in term
of the Bessel functions, but this is not necessary. Inde
taking into regard, in line with the previous approximation
thatkr@1, the Laplace approximation can be applied to t
integral, a dominant contribution coming from a vicinity o
the pointu5p ~point A in Fig. 1!:

E
0

2p

exp~2kr cosu!du'A2p~kr!21/2e1kr. ~28!

Substituting this into Eq.~27!, one sees that ther-dependent
multipliers in Eq. ~27! are exactly cancelled byr21/2e1kr

from Eq. ~28!. This cancellation~in the lowest-order ap-
proximation considered here! is a crucial result, as it make
the effective potential independent of the auxiliary radiusr.

Of course, the dependence onr will not disappear if one
tries to calculate higher-order corrections~with respect to
R21) to the effective potential. Actually, this implies that th
effective interaction potential, treating the solitons as p
ticles, can be consistently defined only in the lowest-or
approximation. At the higher orders, it is necessary to exp
itly take into regard deformation of the solitons by the inte
actions, which is not an objective of the present work.

l



r-

o-

od
f
s

io

.

th
y

e
e

,
t
t

om

e

e
pa

ls

the
lay

n-

3D
s at

es,

l

sec-

f
nly

by a
en-
m

the

pe
S’s
p-

of

un-

ta-
-
xt-

BS,

7932 PRE 58BORIS A. MALOMED
In the term$1
2% in Eq. ~27!, c is replaced, according
to its definition, by2c, and the dominant point in the su
face integral isu50. This means that the term$1
2% is
obtained by the changec→2c s1p→2s1p. Finally, in
the multiplier e2kR in Eq. ~27!, small q52Imk should be
also taken into regard@see Eq.~5!#, as it gives rise to an
important effect, viz., long-period oscillations in the exp
nentially decaying tail of the interaction potential@10#. Note
that the potential does not directly take into account the m
el’s small dissipative part; however, that part indirectly a
fects the potential, inducing the oscillations in the soliton
tails in Eq.~4! through Imk.

With regard to what was said above, the final express
for the potential~27! is

U2~R,c!522A2puAsu2~21!scosc~A22v/R!1/2

3exp~2A22vR!cos~qR!, ~29!

wheres is eithers1 or s2[6s1 , both giving the same value
Except for the factors (A22v/R)1/2 and (21)s, which are
specific for the 2D case, the potential~29! is essentially the
same as that obtained in the similar 1D models in Ref.@10#.

In the 3D case, the consideration is also limited to
interaction of identical solitons~as it was said above, onl
the spinless solitons are considered in the 3D case!. The
above expression~22! yields the interaction potential in th
3D case too~recall that, in this case, the integration in th
surface term is over the sphere!. As well as in the 2D case
the first term in Eq.~22! vanishes in the approximation tha
neglects the direct influence of the dissipation, and the in
gration over the sphere is dominated by a contribution fr
a small vicinity of the pointA ~Fig. 1!. Substituting into Eq.
~22! the 3D asymptotic expressions~7! for Vs andVt and the
expansion~26!, one arrives, instead of the integral~28!, at

2pE
0

p

exp~2kr cosu!sinu du52p~kr!21~e1kr2e2kr!

'2p~kr!21e1kr. ~30!

With regard to Eq.~30!, the final expression for the effectiv
interaction potential in the 3D case becomes@cf. Eq. ~29!#

U3~R,c!524puAsu2coscR21exp~2A22vR!cos~qR!.
~31!

Note that the auxiliary radiusr is completely canceled out in
the final expressions~29! and ~31!.

The potentials~29! and~31! can be as well applied to th
description of the interaction between the 2D and 3D s
tiotemporal solitons~LB’s!, given by Eqs.~9! and ~4!, ~7!.
The differences from the above results are thatq50 ~recall
the dissipation was completely neglected in the LB mode!,
v must be replaced by2k, and the separationR between the
solitons is replaced by thespatiotemporal separationJ de-
fined according to Eq.~9!:

J5AR'
2 1T2, ~32!
-
-
’

n

e

e-

-

R' and T being, respectively, the separation between
solitons in the transverse direction and the temporal de
between them.

B. The model with the quadratic nonlinearity

The interaction potential for thex (2) solitons has its own
peculiarities. For the spatial~stationary! 2D x (2) solitons, the
exponentially decaying potential with two components, ge
erated by the FH and SH fields, was postulated in Ref.@2#.
The interaction between thex (2) LB’s is more complicated,
because the nonstationary model~12! and~13! is, effectively,
spatiotemporally anisotropic, as it was explained in detail in
the previous section, see Eqs.~14!, ~15!, and~18!. A straight-
forward consideration demonstrates that, in both 2D and
cases, the SH-generated interaction potential dominate
g,d, so that the potential is given by Eqs.~29! and ~31!,
with v replaced by 2g, q50, and R replaced by

J̃[AR'
2 1d21T2, cf. Eqs.~15! and~32!. On the contrary to

this, atg.1, the FH-generated interaction always dominat
which means that one should use the potentials~29! and~31!,
with v521 andR replaced byJ defined as per Eq.~32!. In
the intermediate cased,g,1 @cf. Eq. ~16!; recall that the
physically relevant case isd,1#, the interaction potentia
turns out to be truly anisotropic in the plane (R' ,T): the
SH-generated interaction dominates inside the sector@cf. Eq.
~17!#

~T/R'!2,
12g

g2d
d, ~33!

and the FH-generated interaction dominates outside the
tor ~33!. Accordingly, one should substituteR in the expres-

sions~29! and ~31! for the interaction potential byJ̃ inside
the sector~33!, and byJ outside of it.

IV. CONCLUDING REMARKS

The effective interaction potentials~29! and~31! can give
rise to bound states~BS’s! of two solitons. In the presence o
the dissipation and gain, it makes sense to consider o
BS’s of quiescent solitons, as any motion is suppressed
friction force. Because the form of the potentials is ess
tially the same as in 1D, the situation is not different fro
the 1D case, which was recently studied in detail@19#. There
are two types of BS’s, with the phase difference between
solitons c50 or p, and with c5p/2. The BS’s of the
former type are saddles, while the BS’s of the latter ty
have imaginary stability eigenvalues. The fact that the B
with c50 or p are saddles is related to a fundamental pro
erty of the interacting solitons: while an effective massmR of
the two-soliton system corresponding to the radial degree
freedomR is positive, an effective massmc of the phase
degree of freedom isnegative@19#.

Thus, these two types of the BS’s are, respectively,
stable and stable, in the first approximation. In Ref.@19#, it
has also been demonstrated that the BS withc5p/2 is sub-
ject, in the next approximation, to an extremely weak ins
bility, which transforms it into a very slowly unwinding spi
ral. However, it was also demonstrated that, even if this ne
order instability can be observed, it does not destroy the
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but, instead, makes it dynamical, withR andc very slowly
oscillating in alimited range. Note that the same mechanis
gives rise, in the 1D case, to~almost! stable chains of the
bound solitons; in the 2D and 3D cases, a new possible
tern is alattice of the bound solitons. There may also ex
‘‘covalent soliton molecules,’’ in the form of triangles an
tetrahedrons in the 2D and 3D cases, respectively.

In the absence of the dissipation, BS of mutually orbiti
solitons is possible in the 2D and 3D cases~in the latter case,
it is assumed that the two solitons move in one plane!. Or-
biting of incoherently interacting 2D solitons was expe
mentally observed in a photorefractive medium@3#. Numeri-
cal simulations and analytical arguments presented in R
@2# demonstrate that the orbiting BS states of the 2D solit
in the x (2) model are unstable. In the present class of
models, the orbiting BS cannot be stable either. Indeed,
the orbiting state the interaction potential~29! or ~31! must
be supplemented by the centrifugal energyEcf

5(M2/2mR)R22, where M is the angular moment of th
soliton pair, andmR is the above-mentioned effective mas
Thus, the net effective energy of the orbiting state is

Eeff5UD~R,c!1Ecf

[CDcoscR2~D21!/2exp~2A22vR!

1~M2/2mR!R22, ~34!
t.

z,

n-

r,

e

t-
t

f.
s
e
or

.

where, according to Eqs.~29! and ~31!, the constantCD de-
pends on the dimensionD and the soliton’s spins. It is easy
to check that the effective energy~34! gives rise to a station-
ary state with sinc50, CD cosc,0, provided thatM2 is
small enough. However, this stationary state always
]2Eeff /]R2,0, i.e., it is amaximumof the effective energy,
consequently, the orbiting BS is unstable against variation
R. Moreover, one can check that the same state always
]2Eeff /]c2.0. With regard to the above mentionedmc
,0, this BS is also unstable against variation ofc.

In conclusion, a general method to find the effective p
tential of interaction between two-dimensional and thre
dimensional solitons was elaborated, including the case
the two-dimensional vortex~spinning! solitons. The method
is based on calculation of the overlapping term in the f
Hamiltonian of the system. The main technical point th
makes the calculation possible is that the bulk integral
duces to a surface one and, in the lowest-order approxi
tion, the final expression does not contain the auxiliary
dius of the overlapping region. The result applies to spa
solitons and ‘‘light bullets’’~spatiotemporal solitons! in non-
linear optics~in the model with the quadratic nonlinearity
the interaction between the ‘‘bullets’’ may be spatiotemp
rally anisotropic!. The interaction potential predicts that a
orbiting bound state of two solitons exists, but is alwa
unstable. In the presence of weak dissipation and gain,
effective potential can also be derived, giving rise to bou
states of the solitons~both unstable and almost stable! simi-
lar to those recently studied in the one-dimensional mod
R

ys.
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